
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 3, 1165-1171 (2017)

www.astesj.com
Special Issue on Recent Advances in Engineering Systems

ASTES Journal
ISSN: 2415-6698

Comparative Study of Adaptive Consensus Control of Euler-
Lagrange Systems on Directed Network Graph

Yoshihiko Miyasato*

The Institute of Statistical Mathematics, Tachikawa, Tokyo, 190-8562, Japan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 28 April, 2017
Accepted: 28 June, 2017
Online: 20 July, 2017

A comparative study between adaptive consensus control of
multi-agent systems composed of fully actuated mobile robots which are 
described as a class of Euler-Lagrange systems on directed network 
graphs based on the notion of inverse optimal H∞ control criterion
(Controller I), and the similar control strategy without H∞ control 
criterion (Controller II), is given in this paper. Controller I is deduced 
as a solution of certain H∞ control problem, where estimation errors of 
tuning parameters are considered as external disturbances to the 
process. Asymptotic properties, stability and robustness to unknown 
parameters are discussed for Controller I and Controller II.
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1 Introduction

Motivated by crowd behaviors of animals, birds and
fish, cooperative control problems of multi-agent sys-
tems are active research fields, and plenty of control
strategies have been proposed in those areas, such
as formation control, task assignment, traffic control,
and scheduling et al. (for example, [1]-[11]). Among
those, distributed consensus tracking of multi-agent
systems with restricted communication networks, has
been a basic and important issue, and various re-
search results have been developed for various pro-
cesses and under various conditions such as [1], [12]-
[21]. In those works, adaptive control methodologies
were also investigated in order to deal with uncertain-
ties of agents, and stability of control systems was as-
sured via Lyapunov function analysis. Furthermore,
robustness properties of the control schemes were also
examined. However, so much attention does not have
been paid on control performance such as optimal
property or transient performance in those research
works, and especially, the case of multi-agent systems
composed of processes with unknown and different
system parameters on directed information network
graphs, does not have been investigated in detail in
the previous works.

The purpose of the paper is to provide a com-
parative study of two types of adaptive consensus
control schemes (Controller I and Controller II) of
multi-agent systems composed of fully actuated mo-
bile robots which are described as a class of Euler-

Lagrange systems [22] on directed network graphs.
Controller I is constructed based on the notion of
inverse optimal H∞ control criterion [23], [24], and
Controller II is synthesized without H∞ control cri-
terion. Controller I is derived as a solutios of cer-
tain H∞ control problem, where estimation errors of
tuning parameters are considered as external distur-
bances to the process. Asymptotic properties, stability
and robustness to unknown parameters are discussed
for those two control strategies (Controller I and Con-
troller II).

The proposal of Controller I is an extension of our
previous work [25], [26], in which the first-order or
second-order linear or nonlinear regression models
on directed network graphs were considered. This
manuscript is also an extended version of the con-
ference paper [1] (proposal of Controller I), and es-
pecially the present paper adds a comparative study
of the two types of adaptive consensus control strate-
gies (proposal and comparison of Controller I and
Controller II), and highlights robustness properties of
Controller I.

2 Multi-Agent Systems and Net-
work Graphs

Mathematical preliminaries on information network
graph of multi-agent systems are summarized [17],
[20], [21]. As a model of interaction among agents,
a weighted directed graph G = (V , E) is considered,
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where V = {1, · · · , N } is a node set which corresponds
to a set of agents, and E ⊆ V × V is an edge set. An
edge (i, j) ∈ E means that agent j can obtain informa-
tion from i, but not necessarily vice versa. In the edge
(i, j), i is called as a parent node and j is called as
a child node, and the in-degree of the node i is the
number of its parents, and the out-degree of i is the
number of its children. An agent which has no parent
(or with the in-degree 0), is denoted as a root. A di-
rected path is a sequence of edges in the form (i1, i2),
(i2, i3), · · · (∈ E), where ij ∈ V . The directed graph is
called strongly connected, if there is always a directed
path between every pair of distinct nodes. A directed
tree is a directed graph where every node has exactly
one parent except for a unique root, and the root has
directed paths to all other node. An directed span-
ning tree GS = (VS , ES ) of the directed graph G = (V , E)
is a subgraph of G such that GS is a directed tree and
VS = V .

Associated with the edge set E, a weighted adja-
cency matrix A = [aij ] ∈ RN×N is introduced, and the
entry aij of it is defined by

aij =
{
> 0 : (j, i) ∈ E ,
0 : otherwise.

For the adjacency matrix A = [aij ], the Laplacian ma-
trix L = [lij ] ∈ RN×N is defined such as

lii =
N∑
j = 1
j , i

aij ,

lij = −aij , (i , j).

Laplacian matrix has at least one zero eigenvalue and
all nonzero eigenvalues have positive real parts. Espe-
cially, the Laplacian matrix has a simple 0 eigenvalue
with the associated eigenvector 1 = [1 · · ·1]T , and all
other eigenvalues have positive real parts, if and only
if the corresponding directed graph has a directed
spanning tree.

In this manuscript, a consensus control problem of
leader-follower type is considered, where y0 is a leader
which each agent i ∈ V should follow (i is called a fol-
lower). Concerned with the leader, ai0 is defined such
as

ai0 =


> 0 : leader′s information is available

to follower i,
0 : otherwise,

(1)

and from ai0 and L, the matrix M ∈ RN×N is defined
by

M = L+ diag(a10 · · · aN0). (2)

It is shown that −M is a Hurwitz matrix, if and only
if 1. at least one ai0 (1 ≤ i ≤ N ) is positive, and 2.
the graph G has a directed spanning tree with the root
i = 0.

Hereafter, we assume that

1. The graph has a directed spanning tree with the
root i = 0.

2. At least one ai0 (1 ≤ i ≤N ) is positive, that is, the
information of the leader y0 (ẏ0, ÿ0), is available
to at least one follower i.

3. For the leader, y0, ẏ0, ÿ0 are uniformly bounded.

In the following, two adjacency matrices A = [aij ],
C = [cij ] ∈ RN×N are introduced for a directed graph
G, and the corresponding matrices are denoted as La,
Lc (Laplacian matrices), and Ma, Mc, respectively.

3 Problem Statement

A multi-agent system composed of N fully actuated
mobile robots which are described as a class of Euler-
Lagrange systems [9], [10], are considered such that

Mi(yi)ÿi +Ci(yi , ẏi)ẏi = τi , (i = 1, · · · , N ), (3)

where yi ∈ Rn is an output (a generalized coordinate),
τi ∈ Rn is a control input (a force vector),Mi(yi) ∈ Rn×n
is an inertia matrix, and Ci(yi , ẏi) ∈ Rn×n is a matrix of
Coriolis and centripetal forces. Each component has
the next properties as a Euler-Lagrange system.

Properties of Euler-Lagrange Systems [22]

1. Mi(yi) is a bounded, positive definite, and sym-
metric matrix.

2. Ṁi(yi)− 2Ci(yi , ẏi) is a skew symmetric matrix.

3. The left-hand side of (3) can be written into

Mi(yi)ai +C(yi , ẏi)bi = Yi(y, ẏi , ai ,bi)θi , (4)

where Yi(yi , ẏi , ai ,bi) is a known function of yi ,
ẏi , ai , bi (a regressor matrix), and θi is an un-
known system parameter vector.

The control objective is to achieve consensus track-
ing of the leader-follower type for the unknown multi-
agent system (unknown θi) such as

yi → yj , (i, j = 1, · · · , N ), (5)

yi → y0, (i = 1, · · · , N ), (6)

under the limited communication structure G among
agents.

Remark 1 More generalized Euler-Lagrange
systems including damping terms and gravitational
forces, can be also considered in the present frame-
work. However, for simplicity of notations, the de-
scription (3) is to be adopted hereafter, since the gen-
eralized Euler-Lagrange systems are written in the
similar form to (4).
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4 Control Law and Error Equation

As the first step of the design of Controller I and Con-
troller II, an estimator of ẏ0 (the leader’s information)
is developed via available data from the follower i. A
similar estimation procedure was presented in [16].

˙̂zi(t) = −β
N∑
j = 1
j , i

cij {ẑi(t)− ẑj (t)}

−βci0{ẑi(t)− ẏ0(t)}+ni0ÿ0(t), (7)

where ẑi is a current estimate of ẏ0, and is synthesized
from the data available to the follower i. cij (1 ≤ i ≤
N, 0 ≤ j ≤ N ) is defined as the entry of the adjacency
matrix C and (1) deduced from the directed graph G,
and β > 0 is a design parameter. Associated with ci0,
ni0 is defined such as

ni0 =
{

1 : ci0 > 0,
0 : otherwise. (8)

By employing the estimate ẑi , the control scheme is
constructed as follows:

ẏri(t) = ẑi(t)−α
N∑
j = 0
j , i

aij {yi(t)− yj (t)}, (9)

si(t) = ẏi(t)− ẏri(t), (10)

τi(t) = Yi(t)θ̂i(t) + vi(t), (11)

Yi(t) ≡ Yi(y, ẏi , ÿri , ẏri), (12)

where aij (1 ≤ i ≤ N, 0 ≤ j ≤ N ) is defined similarly
from the entry of the adjacency matrix A and (1) de-
duced from G, and α > 0 is a design parameter. θ̂i is
denoted as a current estimate of unknown θi , and vi
is a stabilizing signal which is to be determined later
based on the notion of inverse optimal H∞ control
criterion (Controller I), or without H∞ control crite-
rion (Controller II). An estimation error between the
leader ẏ0 and the estimate ẑi is defined by

z̃i(t) ≡ ẑi(t)− ẏ0(t), (13)

and the following relations are deduced for si and z̃i .

˙̃zi(t) = −β
N∑
j = 1
j , i

cij {z̃i(t)− z̃j (t)}

−βci0z̃i(t) + (ni0 − 1)ÿ0(t), (14)

Mi(yi)ṡi(t) +Ci(yi , ẏi)si(t)

= vi(t) +Yi(t){θ̂i(t)−θi}. (15)

Then, the overall representations of the multi-agent
system are given as follows:

˙̃z(t) = −β (Mc ⊗ I) z̃(t) + {(N0 − 1)⊗ I} ÿ0(t), (16)

Mṡ(t) +Cs(t) = Y (t){θ̂ −θ(t)}+ v(t), (17)

where

z̃ = [z̃T1 , · · · , z̃
T
N ]T, (18)

s = [sT1 , · · · , s
T
N ]T, (19)

M = block diag(M1, · · · , MN ), (Mi ≡Mi(yi)), (20)

C = block diag(C1, · · · , CN ), (Ci ≡ Ci(yi , ẏi)), (21)

Y = block diag(Y1, · · · , YN ), (22)

θ = [θT1 , · · · , θ
T
N ]T, (23)

N0 = [n10, · · · , nN0]T, (24)

1 = [1, · · · , 1]T, (25)

v = [vT1 , · · · , v
T
N ]T, (26)

and ⊗ denotes Kronecker product.

5 Adaptive H∞ Consensus Con-
trol for Euler-Lagrange Systems
(Controller I)

In this section a design scheme of adaptive consensus
control based on inverse optimal H∞ criterion (Con-
troller I) is provided. Stability analysis of the overall
control system and deduction of Controller I are com-
posed of four steps. As the first step, for stability anal-
ysis of s and the related terms, a positive function W0
is defined such as

W0(t) =
1
2
s(t)TMs(t). (27)

Then, the time derivative of W0 along its trajectory is
derived as follows:

Ẇ0(t) = s(t)T[Y (t){θ̂ −θ(t)}+ v(t)]. (28)

By considering the evaluation of Ẇ0 (28), the next vir-
tual system is introduced.

ṡ = f + g1d + g2v, (29)

f = 0, (30)

g1 = Y , g2 = I, (31)

d = (θ̂ −θ). (32)

The virtual system is to be stabilized via a control in-
put v based on H∞ criterion, where d is considered
as an external disturbance to the process. For that
purpose, the following Hamilton-Jacobi-Isaacs (HJI)
equation and its solution V0 are introduced.

Lf V0 +
1
4

‖Lg1
V0‖2

γ2 − (Lg2
V0)R−1(Lg2

V0)T
+ q = 0,

(33)

V0 =
1
2
sTs, (34)

where q and R are a positive function and a positive
definite matrix respectively, and those are deduced
from HJI equation based on the notion of inverse op-
timality for the given solution V0 and a positive con-
stant γ . The substitution of the solution V0 (34) into
HJI equation (33) yields

1
4
sT

{
YY T

γ2 −R
−1

}
s+ q = 0. (35)

From (35), R and q are obtained such as
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R =
(
YY T

γ2 +K
)−1

, (36)

q =
1
4
sTKs, (37)

where K is a diagonal positive definite matrix (a de-
sign parameter), From R, v is derived as a solution
of the corresponding H∞ control problem as follows
(Controller I):

v = −1
2
R−1(Lg2

V0)T = −1
2
R−1s

= −1
2

(
YY T

γ2 +K
)
s. (38)

Then, via HJI equation, the time derivative of W0 (28)
is evaluated as follows:

Ẇ0 = −q − vTRv

+
(
v +

1
2
R−1s

)T
R
(
v +

1
2
R−1s

)
+γ2‖d‖2 −γ2

∥∥∥∥∥∥d − Y Ts

2γ2

∥∥∥∥∥∥2

, (39)

and it follows that s is bounded for bounded θ̂ and for
the stabilizing signal v (38).

Next, for stablity analysis of the estimation error z̃,
a positive function V1 is introduced such as

V1 = z̃T(Pc ⊗ I)z̃, (40)

PcMc +MT
c Pc = I, (Pc = P T

c > 0). (41)

There exists a positive definite and symmetric matrix
Pc satisfying (41), since −Mc is Hurwitz. Then, the
time derivative of V1 along its trajectory is evaluated
as follows:

V̇1 = −β‖z̃‖2 − 2z̃T(Pc ⊗ I){(N0 − 1)⊗ I}ÿ0

≤ −
β

2
‖z̃‖2 +

2
β
‖Pc ⊗ I‖2‖{(N0 − 1)⊗ I}ÿ0‖2, (42)

and it is shown that z̃ is bounded for bounded ÿ0.
Thirdly, for stability analysis of the control error

yi − y0 and the related terms, ỹi , ỹ are defined by

ỹi = yi − y0, (43)

ỹ = [ỹT1 , · · · , ỹ
T
N ]T. (44)

Then, the following relation holds

˙̃y = s+ z̃ −α(Ma ⊗ I)ỹ, (45)

and −Ma is shown to be Hurwitz because of the as-
sumption of the network graph G. From that property,
a positive function V2 is defined by

V2 = ỹT(Pa ⊗ I)ỹ, (46)

PaMa +MT
a Pa = I, (Pa = P T

a > 0). (47)

Similarly to the previous case (Mc), there exists a pos-
itive definite and symmetric matrix Pa satisfying (47),
since −Ma is Hurwitz. Then, the time derivative of V2
along its trajectory is evaluated as follows:

V̇2 = −α‖ỹ‖2 + 2ỹT(Pa ⊗ I)(s+ z̃)

≤ −α
2
‖ỹ‖2 +

4
α
‖Pa ⊗ I‖2(‖s‖2 + ‖z̃‖2). (48)

From the three stages of stability analysis (the
evaluations of Ẇ0, V̇1, V̇2), the next theorem is ob-
tained.

Theorem 1 The nonlinear control system composed
of the control laws (7), (9), (10), (11), (12), (38) (Con-
troller I) is uniformly bounded for an arbitrary bounded
design parameter θ̂i , and bounded y0, ẏ0, ÿ0, and v is an
optimal control input which minimizes the following cost
functional J .

J(t) ≡ sup
di ,d2,d3∈L2

[∫ t

0
{q+ vTRv}dτ +W0(t)

−γ2
∫ t

0
‖d‖2dτ

]
. (49)

Also the next inequality holds.∫ t

0
{q+ vTRv}dτ +W0(t)

≤ γ2
∫ t

0
‖d‖2dτ +W0(0). (50)

Theorem 1 denotes the properties of the proposed
nonlinear control system (7), (9), (10), (11), (12), (38)
(Controller I), where the tunings of θ̂ is not included
(or not necessarily required).

Next, the tuning law of θ̂ is determined as follows:

˙̂θ(t) = Pr
{
−ΓY (t)Ts(t)

}
, (51)

where Pr(·) is a projection operation in which the tun-
ing parameter θ̂ is constrained to a bounded region
deduced from upper-bounds of ‖θ‖ [27]. As the fourth
step of stability analysis of the overall control system,
a positive function W1 is defined by

W1(t) =
1
2
s(t)Ts(t) +

1
2

{
θ̂(t)−θ

}T
Γ −1

{
θ̂(t)−θ

}
, (52)

and the time derivative of W1 along its trajectory is
evaluated such as

Ẇ1(t) ≤ −1
2
s(t)TR−1s ≤ 0. (53)

From the four stages of stability analysis (the evalua-
tions of Ẇ0, Ẇ1, V̇1, V̇2), the next theorem is obtained.

Theorem 2 The adaptive control system composed
of the control laws (7), (9), (10), (11), (12), (38), and the
tuning law of θ̂ (51) (Controller I), is uniformly bounded
for bounded y0, ẏ0, ÿ0, and it follows that

lim
t→∞

s(t) = 0. (54)

Especially, if ÿ0(t) = 0 or the information of the leader ÿ0
is available for all followers ({(N0 −1)⊗ I} ẏ0 = 0), then it
follows that

lim
t→∞

ỹ(t) = lim
t→∞

˙̃y(t) = 0, (55)
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and the asymptotic consensus tracking is achieved. Oth-
erwise, when ÿ0(t) , 0 and the information of ÿ0 is not
available for all followers ({(N0 − 1)⊗ I} ÿ0 , 0), then the
next relation holds.

‖ỹ‖ ∼ const. · 1
αβ
‖{(N0 − 1)⊗ I}ÿ0‖, (56)

‖ ˙̃y‖ ∼ const. · 1
β
‖{(N0 − 1)⊗ I}ÿ0‖. (57)

Theorem 2 denotes the properties of the proposed
adaptive control system (7), (9), (10), (11), (12), (38),
(51) (Controller I), and states that the asymptotic con-
sensus tracking is achieved under the specified con-
dition ({(N0 − 1) ⊗ I} ẏ0 = 0), and also shows that the
approximate consensus tracking with the ratios of
1/(αβ), 1/β (> 0) is still assured, even if that condition
is not satisfied ({(N0 − 1)⊗ I} ÿ0 , 0).

Remark 2 It should be noted the proposed con-
trol scheme and the adaptation scheme (Controller I)
are all implemented in a distributed fashion, where
availabilities of signals for each agent i are highly re-
stricted and prescribed by the directed graph G.

Remark 3 The objective of the design of Con-
troller I, is to obtain an adaptive control structure
whose stability is not seriously affected by the adap-
tation scheme, or whose performance is not signifi-
cantly degraded by the estimation errors of the tun-
ing parameters. For that purpose, in order to atten-
uate the effects of the estimation errors, the control
scheme is to be deduced as a solution of certain H∞
control problem, where L2 gains from the estimation
errors of tuning parameters to the generalized output
is prescribed by a positive constant γ (design param-
eter).

Remark 4 Of course, J in Theorem 1 is a fictitious
cost functional, since d is not an actual disturbance
but an estimation error of the tuning parameter, and
since it is not generally included in L2[0,∞). Never-
theless, v, which is derived as a solution for that fic-
titious H∞ control problem (Controller I), attain the
inequality in Theorem 1, stabilize the total system,
and it means that the L2 gain from the disturbance
d to the generalized output

√
q+ vTRv is prescribed

by the positive constant γ .

6 Adaptive Consensus Control for
Euler-Lagrange Systems without
H∞ Criterion (Controller II)

The adaptive consensus control strategy without H∞
control criterion (Controller II) is easily deduced by
setting γ →∞ in the synthesis of v (38) such that

v = −1
2
Ks. (58)

In this case, the tuning scheme of θ̂ (51) is required to
assure uniform boundedness of the total control sys-
tem. The time derivative of W1 (52) with the tuning

law (51) gives

Ẇ1(t) ≤ −1
2
s(t)TKs ≤ 0. (59)

Then, by applying the same stability analysis via the
evaluations of Ẇ1, V̇1, V̇2, the following theorem is
obtained.

Theorem 3 The adaptive control system composed
of the control laws (7), (9), (10), (11), (12), (58), and
the tuning law of θ̂ (51) (Controller II), is uniformly
bounded for bounded y0, ẏ0, ÿ0, and it follows that

lim
t→∞

s(t) = 0. (60)

Especially, if ÿ0(t) = 0 or the information of the leader ÿ0
is available for all followers ({(N0 −1)⊗ I} ẏ0 = 0), then it
follows that

lim
t→∞

ỹ(t) = lim
t→∞

˙̃y(t) = 0, (61)

and the asymptotic consensus tracking is achieved. Oth-
erwise, when ÿ0(t) , 0 and the information of ÿ0 is not
available for all followers ({(N0 − 1)⊗ I} ÿ0 , 0), then the
next relation holds.

‖ỹ‖ ∼ const. · 1
αβ
‖{(N0 − 1)⊗ I}ÿ0‖, (62)

‖ ˙̃y‖ ∼ const. · 1
β
‖{(N0 − 1)⊗ I}ÿ0‖. (63)

Remark 5 Asymptotic properties of the adaptive
consensus control without H∞ criterion ((60), (61),
(62), (63) (Controller II)) are the same as the adaptive
H∞ consensus control version ((54), (55), (56), (57)
(Controller I)). However, it should be noted that uni-
form boundedness of the overall control system via
Controller II is not assured for arbitrary bounded de-
sign parameters θ̂. Instead, the tuning of θ̂ (51) is
necessary to attain the stability of consensus tracking
by Controller II. Furthermore, Controller II in Theo-
rem 3 does not contain an optimal property for the
cost functional (49), and the inequality (50) does not
hold.

7 Numerical Example

In order to show the effectiveness of the two types of
adaptive consensus control schemes, numerical exper-
iments for Euler-Lagrange systems are performed.

A multi-agent system composed of simple Euler-
Lagrange systems is considered as follows:

mi ÿi(t) = τi(t), (i = 1, 2, 3),

(y1(0) = 1, y2(0) = 0, y3(0) = −1),

where yi ∈ R, τi ∈ R, andmi ∈ R is an unknown system
parameter. Associated with the information network
structure (Fig.1), the adjacency matrix A = [aij ] (= C)
and ai0 (= ci0) are chosen such that

A =

 0 1 0
1 0 1
0 1 0

 ,
a10 = 1, a20 = a30 = 0.
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The control objective is to achieve consensus tracking

yi → yj , ẏi → ẏj ,

yi → y0, ẏi → ẏ0,

(i, j = 1, 2, 3),

where the virtual leader y0 is determined such as

ÿ0 + 2ẏ0(t) + y0(t) = sin t.

The design parameters are chosen as follows:

Γ = 10I, K = 5I, α = β = 10,

γi = 1.

As system parameters mi (i = 1 ∼ 3), we consider both
time-invariant and time-varying cases such that

m1 = 1, m2 = 2, m3 = 3, (time− invariant case),

m1 = fm(t), m2 = 2fm(t), m3 = 3fm(t),

(time− varying case),

where

fm(t) =
{

2 0 ≤ t < 2.5, 5 ≤ t < 7.5, · · · ,
1 2.5 < t ≤ 5, 7.5 < t ≤ 10, · · · .

Numerical simulations were carried out by utiliz-
ing MATLAB and Simulink of the MathWorks, Inc.,
and the solver is Dormand-Prince method with the
adaptive step-size integration algorithm (ode45).

The simulation results of Controller I (Theorem
2) are shown in Fig.2 (time-invariant case) and Fig.4
(time-varying case). For comparison, the cases of Con-
troller II (the adaptive control systems which do not
containH∞ control scheme), are shown for both cases;
Fig.3 (time-invariant case) and Fig.5 (time-varying
case). In those figures (Fig.2 ∼ Fig.5), the plots were
response curves of y1, y2, y3 and y0 (vertical axises)
versus time t (horizontal- axises).

From those results, it is seen that Controller I
(H∞ adaptive control strategy) achieves better track-
ing convergence property together with robustness to
abrupt changes of the system parameters compared
with the non-H∞ control scheme (Controller II), and
those are owing to disturbance attenuation properties
of Controller I, since the performance of Controller I
is not significantly degraded by the estimation errors
of the tuning parameters in the settings of both time-
invariant and time-varying cases (see also Remark 3).

8 Concluding Remarks

The comparative study of two types of adaptive con-
sensus control (Controller I and Controller II) of
multi-agent systems composed of fully actuated mo-
bile robots which are described as a class of Euler-
Lagrange systems on directed network has been given
in this paper. Controller I is deduced based on the
notion of inverse optimal H∞ control criterion, and

is derived as a solution of certain H∞ control prob-
lem, where estimation errors of tuning parameters
are considered as external disturbances to the process.
On the contrary, Controller II is synthesized without
H∞ control criterion. Asymptotic properties, stabil-
ity and robustness to unknown parameters are dis-
cussed for those two control strategies (Controller I
and Controller II). Although asymptotic properties of
those two controllers are similar to each others, Con-
troller I achieves better tracking convergence prop-
erty together with robustness to abrupt changes of the
system parameters compared with Controller II, and
those are owing to disturbance attenuation properties
of Controller I and the problem setting of H∞ crite-
rion.

Fig. 1 Information Network Graph
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Fig. 2 Simulation Result for Time-Invariant Case with
H∞ Control Scheme (Controller I)
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Fig. 3 Simulation Result for Time-Invariant Case
without H∞ Control Scheme (Controller II)
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Fig.4 Simulation Result for Time-Varying Case with
H∞ Control Scheme (Controller I)
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Fig. 5 Simulation Result for Time-Varying Case with-
out H∞ Control Scheme (Controller II)
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